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Stress Analysis of Adhesive 
Bonded Tubular Lap Joints 

R. D. ADAMS and N. A. PEPPIATT 

Department of Mechanical Engineering. University of Bristol. 
Queen‘s Building, University Walk, Bristol BS8 1 TR, England 

(Received July 30, 1976) 

The stresses in adhesive bonded tubular lap joints, subjected to  axial and torsional loads, 
have been analysed using axisymmetric quadratic isoparametric finite elements. In the axial 
load case, the results are compared with a previously published closed-form solution and in 
the torsional case the results are compared with a closed-form solution presented here. 
The influences on the stress distributions of an adhesive fillet and of partial tapering of the 
adherends are also investigated, and an extension to the range of validity of Goland and 
Reissner’s second criterion is proposed. 
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Diameter of adhesive layer 
Young’s modulus of adherend tube 
Young’s modulus of adhesive layer 
Applied load 
Shear modulus of adherend tube 
Shear modulus of adhesive layer 
Polar moment of inertia of adherends 
Overlap length of joint 
Ratio of end thickness to wall thickness of tubes (scarf joints) 
Radius of tubes 
Wall thickness of tube 
Torque 
Cylindrical coordinates 
Shear strain 
Thickness of adhesive layer 
Poisson’s ratio 
Normal stress 
Shear stress 
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2 R. D. ADAMS AND N. A. PEPPIA'IT 

Subscripts 
a Refers to adhesive layer 
1 Refers to inner adherend 
2 Refers to outer adherend 
i 
o 

Refers to inner radius of tube 
Refers to outer radius of tube 

1. INTRODUCTION 

Adhesive bonding provides a convenient and light method of assembling 
structures consisting of thin-walled tubes. Typical joints in such structures 
are the tubular lap joint and the tubular scarf joint shown in Figure 1. The 
purpose of this paper is to show the location of the significant stresses in these 
joints when subjected to a torque or an axial tensile load. Results for the case 
of a combined axial load and torque can be obtained by superposition of the 
two solutions. The finite element method of stress analysis' is used and the 
results compared with closed-form analytical theories where these exist. 

--c 
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~ n : % l y ; c  

I 

- . -- 
(b) n - 0.1, 0.25 

FIGURE 1 (a) Tubular lap joint. (b) Partially tapered tubular scarf joint. 

There is less literature dealing with the stresses in lap joints between thin- 
walled tubes than there is concerning lap joints between flat plates, which 
was the subject of a previous paper by the authorsz although, in the case of 
axial loading, the stress concentrations arise by the same three mechanisms, 
i.e. 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 3 

i) differential straining 
ii) bending introduced by the non-collinearity of the overlapping tubes 
iii) end effects. 
In torsion, there are no bending effects and only differential straining and 

end effects need be considered. 
The system of axes used here is defined in Figure 1, where z represents the 

longitudinal direction, r the radial direction, and 8 the hoop direction. 
Lubkin and Reissner3 have analysed the stresses in tubular lap joints under 

a tensile axial load and give solutions for both the shear stresses, zZr, in the 
adhesive layer, and the normal stresses, a,, across the thickness of the 
adhesive layer which are due to adherend bending. Their analytical method 
assumes that the adhesive can be approximated to an infinite number of 
tensile and shear springs, and that the work of the stresses z,, and a, in the 
adherends can be neglected in comparison with the work of these stresses 
in the adhesive. They present their results in a tabular form for forty-eight 
joints with different geometries and (always linearly elastic) material pro- 
perties. These results show that T,, and a, are a maximum at the end of the 
adhesive layer. However, because of the free surface at the end of the adhesive 
layer, z,, must be zero here. There should, therefore, be a high shear stress 
gradient near the end of the joint, as the shear stress increases from zero on 
the free surface to some maximum value in a very short length. Because of 
stress equilibrium considerations, this high shear stress gradient is associated 
with a normal stress gradient across the thickness of the adhesive layer.2 

Volkersen4 has given a closed form solution for the shear stresses, z,, in 
tubular lap joints acted on by a torque but he assumes, for the purposes of 
analysis, that the tubes are of the same diameter. The simplification is 
unnecessary and a closed form theory which overcomes this limitation is given 
in Appendix I. As there is no free surface in the hoop direction, the shear 
stress, zr0, is a maximum at the ends of the joint. 

Stresses in tubular lap joints under other loading conditions have also 
been investigated. Terekhova and Skoryi5 give a closed-form solution for the 
stresses in tubular lap joints under external and internal pressures which 
neglects the effects of adherend bending. Kukovyakin and Skoryi6 set up 
differential equations for the stresses in tubular lap joints, acted on by a system 
of axisymmetric moments and forces, and which allow for the effects of 
adherend bending. However, as they give results for thick-walled tubes, they 
consider bending effects to be negligible, and so the equations are simplified 
to neglect bending. 

In this paper, the finite element results for the lap joints are compared with 
the solutions of Lubkin and Reissner for the axial load cases, and with the 
theory of Appendix I for the torsion case. In all cases, linearly elastic 
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4 R. D. A D A M S  AND N. A. PEPPIATT 

behaviour of the joint materials is assumed. The closed form theories are 
computationally much more convenient than the finite element method but 
of necessity, they have to assume that the adhesive layer has a square edge as 
shown in Figure 2(a). In practice, when the joint is made, the excess adhesive 
forms a fillet at the ends of the overlap and this can be approximated to a 
triangular fillet for the purposes of analysis (Figure 2(b)). The presence of the 
fillet modifies the stress distributions at the ends of the overlap but can be 
easily accommodated by the finite element method, thus giving more realistic 
results in the important areas at the ends of the overlap than do the closed 
form theories. Alwar and Nagaraja’ have recently described a finite element 
analysis of tubular lap joints in tension, which allows for the viscoelastic 
behaviour of the adhesive. However, they give only a brief mention of the 
elastic case and do not consider the practically important region of the 
adhesive fillet, wherein the maximum stresses occur. 

No closed-form theory for the stresses in a tubular scarf joint has been 
found. The stress distributions in two partially tapered scarf joints which have 
the same mean adhesive layer diameter, the same overlap length, and the 
same material properties as one of the parallel lap joint solutions, are also 
presented. 

Adhes ive  

\ \ \ \  

(b) 

FIGURE 2 (a) Squareedged adhesive layer. (b) Adhesive layer with fillet. 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 5 

2. FINITE ELEMENT ANALYSIS AND MESHES 

The finite element program uses the 8-node isoparametric element' which 
has been advocated by Bond, et aI.* as a good element for general use. It has 
been shown that, for axisymmetric problems, of which the tubular joint 
considered here is an example, the axial loading case is a two degree of 
freedom per node problem and the torsion case is a single degree of freedom 
per node p r ~ b l e m . ~  

In the case of axial loading, the stresses or, o,, o,, T~~ and the principal 
stresses and directions are computed at each of the four Gauss quadrature 
(sampling) points in each element, and a plot of the principal stresses is 
produced. In the case of the tractions in the hoop, 8, direction, the stresses 
zr0 and zz0 are computed at each of the Gauss points. Additionally, the stresses 
at the comer nodes are predicted in both cases from the Gauss point values 
by the least squares method of Hinton, et ~ 1 . ' ~  

Two meshes were used to obtain the finite element results. The square- 
edged solutions were obtained from a mesh of 92 8-node elements, with a 
total of 343 nodes. The remainder of the solutions (lap and scarf joints with 
an adhesive fillet) were obtained using a mesh generation routine giving a 
mesh of 555 nodes and 164-8 node elements. The configuration of this mesh 
is shown in Figure 3. 

FIGURE 3 Finite element mesh. 

3. JOINT GEOMETRIES INVESTIGATED 

Because of the assumptions made in the theory, Lubkin and Reissner3 
considered that the practical range of their theory was limited by both the 
second Goland and Reissner criterion" and the limits of the thin shell theory. 
By strain energy methods, Goland and Reissner" showed that the tensile, 
or, and shear, T ~ ~ ,  stresses in the adherend can be neglected if 

where q is the thickness of the adhesive layer, t the wall thickness of the 
tubes, E,, and G, are the Young's and shear moduli of the adhesive, and E 
and G are the Young's and shear moduli of the tubes. (A full explanation of 
this result is given by Sneddon.12) Lubkin and Reissner3 considered that a 
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6 R. D. ADAMS AND N. A. PEPPIATT 

value of 
t 

2a 
R = - = 0.10 

where 2a is the diameter of the adhesive layer, was near the limits of the thin 
shell theory, i.e. for the theory to apply R < 0.10. 

The finite element results have been compared with three sets of results 
from Table I in Lubkin and Rei~sner .~  One case was chosen to be well 
within the practical bounds of the theory; the second was chosen to be 
outside the bounds of the Goland and Reissner criterion; the third was 
chosen to be outside the bounds of the Goland and Reissner criterion 
and at what Lubkin and Reissner considered to be the practical limits of the 
thin shell theory. 

The three cases taken were 
1 
t 
1 
t 

1 
t 

1) p = 20, - = 10, R = 0.025, 

2) p = 4, - = 10, R = 0.025, 

3 ) p  = 4, - = 10, R = 0.10. 

where p and R are as defined previously, and 1 is the overlap length. 
It can be seen that cases (2) and (3) are outside the limits of the Goland 

and Reissner criterion, and case (3) is near the limits of the thin shell theory. 
Parametric studies cannot easily be performed using the finite element 

method, so the finite element models were given the following dimensions: 
q = 0.2 mm, 
t = 1.0 mm, 
1 = lOmm, 

overall adherend length = 40 mm. 
For R = 0.025, a = 20 mm; for R = 0.10, a = 5 mm. 

The following material properties were also assumed : 
E = 70 000 MN m-’, 
V, = 0.3, v = 0.3333; 

for p = 20, E, = 700 MN m-2; for /l = 4, E, = 3500 MN m-2 (this value is 
typical of a modified epoxy adhesive). 

The same three sets of geometrical and material properties are used to 
compare the results obtained in the torsion case from the closed form theory 
(Appendix I) with the finite element results. This theory neglects the shear 
stresses, t re ,  in the adherends, and so the Goland and Reissner criterion again 
applies. Thus, cases (2) and (3) are outside the bounds of the criterion. 

Jr 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 7 

The partially tapered scarf joint solutions are comparable with case (2), 
as the mean adhesive radius, the adherend thicknesses away from the joint, 
and the material properties are the same as case (2). However, the tube 
diameters cannot be the same as in case (2). The values of n (the ratio of the 
end thickness of the tube to the wall thickness away from the joint) were 
chosen to be 0.1 and 0.25. 

4. NOTE ON THE SECOND CRITERION OF GOLAND 

It has been stated in a previous section that Goland and Reissner" showed 
that the work of the shear stress, z,, (and by analogy, rro) and the normal 
stress, a,, in the adherends could be neglected compared with the work of 
these stresses in the adhesive layer if 

AND REISSNER 

To obtain this result they assumed that 
tog 
2E 

where oo is the normal stress in the adhesive layer. If we assume a linear 
distribution for the a, and z,, stresses across the thickness of the adherend 
(cf. Demarkies 13) 

Thus, the work done by the stresses a, and zrz in one adherend is given 
approximately by 

The work of the stresses in the adhesive is given by 

We can neglect the work of the ar and zrz stresses in the adherend if 
t ?  t ?  - < -  and -4- 

6E 2Ea 6G 2Ga 
If there is an order of magnitude difference between these quantities, the 

results are acceptable, i.e. if 
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8 R. D. ADAMS AND N. A. PEPPIATT 

This result suggests that cases (2) and (3) should now be within the range 
of validity of Lubkin and Reissner’s theory. In more general terms, it is 
useful in that it brings the range of validity of Goland and Reissner’s second 
theory for flat lap joints and Lubkin and Reissner’s theory for tubular lap 
joints closer to many practical joints. 

5. RESULTS AND DISCUSSION 

5.1 Tension cases 

The shear, zIZ, and normal, Q,, stress distributions for the three cases are shown 
in Figures 4, 5 and 6. The stress values have been non-dimensionalized by 
dividing by the mean applied shear stress, rm(=F/2nal). On each plot, the 
Lubkin and Reissner solution is compared with solutions from finite element 
models both with and without an adhesive fillet. 

The stress distributions for case (I), which is within the bounds of Lubkin 
and Reissner’s theory, are shown in Figure 4. Note that the stress distributions 
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V I .  
2: I0 w v )  

u 1 Y  
:: 8 0.1 

1 0.0 

2 t: -0.1 

-0.2 

-0.3 

- Lubkin and Reissner so lut ion 
X Squnre-edged f i n i t e  element model (T?~) 

-0-Square-edged f i n i t e  element model (a ) 

+Fini te  element model v i t h  adhesive f i l l e t  
. r  

Average applied shear s t r e s s  

- Lubkin and Reissner so lut ion 
X Squnre-edged f i n i t e  element model (T?~) 

-0- Square-edged f i n i t e  element model Fr) 
+Fini te  element model v i t h  adhesive f i l l e t  

T atresses  

0 . 3  0.6 0.5 0.6 0.7 0.8 

t 
FIGURE 4 Shear and normal stress distributions in tubular lap joint (case 1) subjected 
to tensile load. 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 9 

are not symmetrical about the mid-point of the overlap, despite the fact that 
tubes of equal wall thickness are being analysed. This is because the tubes are 
of different diameters and hence of different stiffness, the highest stresses 
being at that end of the overlap where the smaller tube is loaded. There is 
good agreement between the solutions for the shear, T,,, stresses from the 
closed-form theory and the square-edged finite element model. In the case of 
the normal, o,, stresses, there is good agreement in the shape of the distribu- 
tions, but the maximum value is predicted to be 35% greater in the case of 
the finite element solution. This is because the finite element solution allows 
for the influence of the adherend tube away from the overlap region, whereas 
the closed-form solution neglects this effect as a result of the assumption 
that the shear force in the r direction is zero at  the end of the overlap. There 
is also a discontinuity in the finite element results at  the ends of the joint. 
This is because the mesh used here is too coarse accurately to model the high 
shear and normal stress gradients resulting from the free surface at the ends 
of the overlap, with the result that the maximum values of the T,, and or 
stresses, averaged across the thickness of the adhesive layer, are slightly 
underestimated. No such discontinuity exists in the stress distributions from 
the finite element model with the adhesive fillet because the stress gradients 

- lubkin and W i s s n e r  so lut ion 

rz) x Square-edged f i n i t e  element m o l e 1  (T 
2.1 

2.2 f + Square-edged f i n i t e  element model (ar)  

4- F i n i t e  element rnodel with adhesive f i l l e t  

2.0 

1.8 

Averap applied shesr stress 

a s t r e s s e s  

219. 

-0.6 L 
FIGURE 5 Shear and normal stress distributions in tubular lap joint (case 2) subjected to 
tensile load. 
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10 R. D. ADAMS AND N. A. PEPPIATT 

are much less. Furthermore, the maximum tensile stress is reduced to 70% 
and the maximum shear stress to 80% of the Lubkin and Reissner values. 
The area under the shear stress distribution is smaller than in the case of the 
square-edged solutions, because part of the load is transferred through the 
adhesive fillet. 

In Figure 5 (case 2), there is again good agreement between the Lubkin and 
Reissner solutions and the square-edged finite element solutions, in spite of 
the fact that the case considered is outside the Goland and Reissner criterion. 
The presence of the adhesive fillet reduces the maximum values of z,, and 
u, by a greater extent, to under 50% of the Lubkin and Reissner value in the 
case of the a, stress, and to under 70% of the closed-form solution value in 
the case of the z,, stress. 

The third case examined was considered by Lubkin and Reissner to be at 
the limits of the thin shell theory, and is outside the bounds of the Goland 
and Reissner criterion by the same amount as case (2). However, from 
Figure 6, it can be seen that there is again good agreement between the finite 
element solution from the square-edged model and the closed-form solution, 
although, as in the previous two cases, the gr stresses from the finite element 

2.2 r 

2.0 

-0.2 

.4.4 

-Lubkin and heihsner so lut ion 

x Square-edged f i n i t e  element modal (rrz) 

--O- Square-edged f i n i t e  element model Cur) 
+-Finice element model with adhesive f i l l e t  

Average applied shear stress -. --. - . ~ 

T~~ s tresses  

1.0 

FIGURE 6 Shear and normal stress distribution in tubular lap joint (case 3) subjected to 
tensile load. 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 11 

solution are higher, because of the influence of the tube away from the joint. 
The presence of the spew fillet again reduces the maximum values of the 
normal, ur, and shear, Z , ~ ,  stresses. 

The good agreement between the results from the square-edged finite 
element model and the closed-form theory in these three cases suggest that 
the results published by Lubkin and Reissner are within the bounds of 
validity of their theory, allowing, of course, for the limitations of the theory 
in its treatment of end effects, boundary conditions and neglect of the 
adhesive fillet. The results for cases (2) and (3) also show that the influence 
on the adhesive stresses of the deformations in the adherends caused by the 
or and r,, stresses are small and, as a result, it can be concluded that the 
proposed modifications to the bounds of the Goland and Reissner criterion, 
given in ,the previous section, are reasonable. 

-- -z 

\ \ \  %\\\ \ L 

. _ _ _  - - - 
FIGURE 7 Principal stress pattern at end of outer adherend in tubular lap joint (case 2). 

The influence of the adhesive fillet on the stress distribution is shown in 
Figure 7 which is a plot showing the results of case (2). Here, the principal 
stresses are plotted at each sampling point within the elements, and they are 
represented in magnitude and direction by the length and direction of the 
lines forming the cross which is centred at the sampling point. A bar at the 
ends of a line signifies a compressive stress. A tensile stress, acting at between 
25" and 45" to the axis of the joint, predominates in the adhesive fillet. This 
merges into a region of shear in the adhesive layer, shown by the equal and 
opposite principal stresses. The maximum stress occurs at the corner of the 
unloaded adherend and its value is influenced by the shape of the corner,z as 
it is not perfectly square in practice. Recent work by the authors, as yet 
unpublished, has also shown that it can be significantly influenced by the 
nonlinear behaviour of the adhesive. 

An idea of the magnitudes of the stress concentrations in the adhesive at 
the corner of the adherend is given in Table I, which gives the stress concen- 
tration values predicted by the closed form theories and the finite element 
solutions as a ratio of the maximum principal stress to the average applied 
shear stress. The finite element values were determined from the mean of the 
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12 R. D. ADAMS AND N. A. PEPPIATT 

stresses predicted at the appropriate corner nodes of those four elements 
which have corner nodes coincident with the adherend corner. It can be seen 
that the stress concentration predicted by the finite element method is greater 
than that predicted in the square-edged case by Lubkin and Reissner. 
However, it must be remembered that this closed-form solution neglects the 
end effects associated with a square edge (i.e., the high shear stress gradient 
and direct stresses associated with a zero shear stress at the end of the 
adhesive layer) and the influence of the adherend away from the joint on the 
a, stresses. Previous finite element workZ suggests that, in the case of flat 
lap joints, the stress concentration resulting from a square-edged adhesive 
layer is approximately two to three times as great as in the case when an 
adhesive fillet is present. 

TABLE I 

Stress concentrations in tubular joints, expressed as the ratio of the maximum principal 
stress to the average applied shear stress 

Joint in tension Joint in torsion 

Stress conc. Finite element Stress conc. Finiteelement 
from (3) stress conc.0 from App. I stress conc.a 

CaSe j R (squareedged) (with fillet) (square-edged) (with fillet) 

Constant wall 
thickness joints 
(n = 1) 

1 20 0.025 1.9 2.5 1.8 2.1 
2 4 0.025 3.1 3.5 3.8 3.8 
3 4 0.10 2.9 3.6 4.8 4.6 

Scarf joints 
(cf. case 2) 
n = 0.25 - 3.6 - 3.5 
n = 0.1 - 3.4 - 3.1 

a The stress concentration values from the finite element solutions are determined from the 
mean of the stresses predicted at the appropriate corner nodes of those four elements which 
have corner nodes coincident with the adherend corner. 

The normal, a,, and shear, z,,, stress distributions in the scarf joints are 
compared with the stress distributions of the comparable lap joint (case 2) 
in Figure 8. It is difficult to separate the effects of different tube diameters, 
the smaller fillet size in the case of the scarf joints, and scarfing on the 
maximum stresses, but the results presented in Figure 8 suggest that scarfing 
by partial tapering of the adherends does not reduce the maximum shear 
stress significantly, but has a considerable influence on the maximum value 
of the a, stress. The a, and z, stresses, however, do not in themselves indicate 
the result of scarfing on the maximum principal stress existing in the adhesive. 
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STRESS ANALYSIS OF TUEULAR LAP JOINTS 13 

The principal stresses are compounded from the a, as well as the a, and z,~ 
stresses, and the stress concentration values given in Table I, in terms of the 
maximum principal stress divided by the average shear stress, suggest that 
scarfing, by partial tapering of the adherends, is of only marginal benefit. 
For instance, when the end thickness of the adherend is one tenth of the 
tube wall thickness, the stress concentration in terms of the maximum 
principal stress divided by the applied shear stress is reduced by 4%, and 
when the end thickness is one quarter of the wall thickness, the stress 
concentration is increased by 4 %. Although a considerable reduction in 
stress concentration may be obtained by tapering the adherends to a knife 
edge, ThammI4 has pointed out that such a joint would be very difficult to 
handle during manufacture. In fact, the results presented here support 
Thamm's conclusions that partial tapering of the adherends for the purposes 
of reducing the stress concentration in the adhesive is not worthwhile. 

_- Lubkin and Rehoner so lut ion (case 2) 

--A ---Finite element model with adhesive f i l l e t  
--x---Partially capered scarf j o i n t  n - 0.25 2.2 
--4-Parcially tapered scarf j o i n t  n I 0.1 

1.6  

1.6 

1.6 

1.2 

1 .o 

0.8 

4.6 

Average applied shear s t r e s s  

0.4 

0.2 
a s t r e s s e s  

0.0 1.0 

-0.2 

4*4 -0.6 t 
FIGURE 8 Shear and normal stress distributions in tubular lap and scarf joints subjected 
to tensile load. 

5.2 Torsion cases 

The shear stress, zr0, distributions, which are the result of applying a torque 
to the joints, are shown in Figure 9. Again, the stresses have been non- 
dirnensionalized by dividing by the mean applied shear stress, z,( = T/2na21). 
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14 R. D. ADAMS AND N. A. PEPPIATT 

Results for case (2) and the scarf joints only are presented graphically here, 
as the closed-form solution given in Appendix I is in very good agreement 
with the square-edged finite element solutions in all three cases, again con- 
firming the proposed relaxation in the bounds of the Goland and Reissner 
criterion. The maximum stress concentrations given by the closed-form 
solution in all three cases are shown in Table I. The stress concentration 
values from the square-edged finite element solutions are not given as these 
differ from the analytical solutions by less than 4%. Note that there is no 
discontinuity in the stress distribution from the square-edged finite element 
solution, as Z,e is a maximum at the free surface. As might have been expected, 
the presence of the adhesive fillet reduces the maximum value of the shear 
stress, Z,e, by nearly 30%. However, significant 2,e stresses are predicted at 
the corner of the unloaded adherend in this case, whereas these do not arise 
in the square-edged finite element solution. The maximum value of the 
Z,,q stress is difficult to determine with great accuracy as it exists in only a 
small region of the adhesive, near the adherend corner. However, the value 

- Closed-form theory (CmE 2) 

0 Square-edged f i n i t e  elerwnt model (Case 2) 

+-Finite element mde l  with adhcaive f i l l e t  (Care 2) 

--%-Partially tapered scarf joint n - 0.25 

&Partially tapered scarf joint n - 0.1 

Average applied Dhear stress 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8  0.9 - 1.0 
t i t  

FIGURE 9 Shear stress distributions in tubular lap and scarF joints subjected to torque. 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 15 

determined from the mean of the stresses predicted at the appropriate 
corner nodes of those four elements which have corner nodes coincident 
with the adherend comer indicates that it is about 80% of the maximum 
z , ~  stress, giving a maximum principal stress concentration close to that 
given by the closed form theory (Table I). It can, therefore, be concluded that 
the influence of the adhesive fillet on the stress concentration in a tubular 
lap joint is far less significant when the joint is deformed by a torque than 
when it is loaded axially. 

The z,@ distributions for the scarf joints, shown in Figure 9, indicate that 
scarfing is beneficial in reducing the maximum shear stress. The results given 
in Table I show that if the end thickness of the adherend is one quarter of 
the wall thickness, the stress concentration is reduced by 8 %, and if the end 
thickness is one tenth of the wall thickness, the stress concentration is 
reduced by 18%. It thus appears that partial tapering of the adherends is 
more beneficial when a joint is deformed by a torque than when it is loaded 
axially, but the reduction of maximum stress obtained is not sufficient to 
justify partial tapering as a worthwhile means of reducing the stress concen- 
tration. 

6. CONCLUSIONS 

Stress distributions, obtained by using axisymmetric quadratic isoparametric 
finite elements, have been presented for several cases of adhesive bonded 
tubular lap joints subjected either to an axial load or to a torque. In the 
axial case, they have been compared with the closed form solution of Lubkin 
and Reissnerj and, in the torsional case, with a closed form solution presented 
in Appendix I. In practice, when a joint is made, excess adhesive flows out 
to form an adhesive fillet, which can be approximated to a triangular shape 
for the purposes of finite element analysis. By considering finite element 
models which treat the adhesive layer as having either a square edge or an 
adhesive fillet at the ends of the overlap, the limitations of closed-form 
theories, which can only treat the adhesive as having a square edge, among 
other assumptions, have been examined. 

In the axial load case, the stress concentrations predicted from the finite 
element models with the fillet have been shown to be greater than those 
predicted by the Lubkin and Reissner theory. This is because the closed-form 
solution does not evaluate the true stress concentrations, i.e. those caused by 
end effects. The influence of the adhesive fillet on the stress concentrations 
in the torsional case is shown to be less significant, as the stress concentration 
values from the closed form theory are of similar size to those predicted 
by the finite element models. 
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16 R. D. ADAMS A N D  N. A. PEPPIATT 

New bounds of validity extending the range of the second criterion of 
Goland and Reissner, which indicates when the work of the shear and trans- 
verse normal stresses in the adherends can be neglected, have been proposed 
and confirmed by the results presented here. 

Additionally, the effects of partial tapering of the adherends to form a 
scarf joint have been investigated. It is concluded that the reductions in 
stress concentration obtained with this form of joint do not make its manu- 
facture for this reason alone worthwhile, and in the axial case the reductions 
in the stress concentration were not found to be significant. 
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APPENDIX I 
Theory for calculating the stresses of a tubular lap joint in torsion 
In this theoretical model, the adhesive is represented as an infinite number of 
shear springs. The joint under consideration is shown in Figure 10, the 
adhesive being sheared in the r0 direction, and the adherends in the z0 
direction under torque. The deformations in the re direction in the adherends 
and in the z0 direction of the adhesive are neglected. Consider an element 
of the joint, length Az. From compatibility considerations, we have 

where subscript 1 refers to the inner adherend 
2 refers to the outer adherend 
a refers to the adhesive layer 
i refers to the inner radius 
o refers to the outer radius 

(Ya + A y a h  - Y A  = Y z 42- Y I o 
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STRESS ANALYSIS OF TUBULAR LAP JOINTS 

W 

1! .J&- 

In the limit 

c 

Dcformarions a t  Plane A Deformations a t  P l o w  a 

FIGURE 10 Deformations in tubular lap joint under torque. 

From considerations of the equilibrium of the twisting moments we have, 
over a length Az, 

T2 + AT2 - T2 = zu2na2Az 
Tl +ATl - TI  = -q,2na2A2 

where a = ( r lO+rz i ) /2  
In the limit 

The stress at the outer radius of tube 1 and the inner radius of tube 2 can 
be related to the torques TI and T2 and the total applied torque T by 

where J1 and J2 are the polar moments of inertia of the tubes. 

2 
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18 R. D. ADAMS AND N. A. PEPPIATT 

Obtaining the differential of Eq. (2), and substituting for yo, yZi and ylo in  
the compatibility Eq. (l), using Hooke’s law, gives 

Substituting for tlo from Eq. (4) in Eq. (5 )  and noting that at z = I 
T=- 7 2 i l J 2  

r2 i 

we have, 

A second-order differential equation has been obtained which can be 
written in the form 

where 
3 

6 =  2rta2rloGo G2J2r10 and a = (i) 
GlJ l?  ’ ’ = r2 iGlJ l+r loG2J2  

The boundary conditions are : 
at z = 0, T~~ = 0; 

at z = 1, 

The solution for the adherend stress T~~ is: 

)sinharz] (8) 
1 - $( 1 -cash ~ r l )  

z2 i  = - Tr2i[$(l-cosh J 2  UZ)+ sinh cll 
From Eq. (2), the adhesive shear stress is given by 

cosh c1z - $ sinh clz 
Ta 1-+(1 -cash ~ r l )  

“ = -[( 2rta sinh ul 
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